

Региональный инжиниринговый центр промышленных лазерных технологий «КАИ- Лазер»

Актуальные задачи центра:

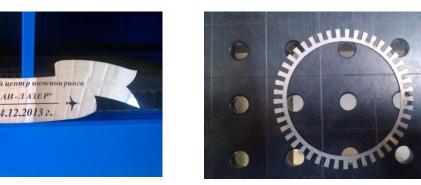
- 1. Содействие в технологическом перевооружении предприятий;
- 2. Разработка новых технологий для авиационной, машиностроительной, судостроительной, нефтегазодобывающей и других отраслей промышленности;

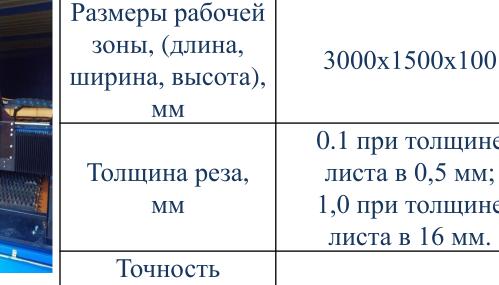
I. Возможности центра:

- 1. Выполнение всех видов лазерной обработки материалов
- Резка
- Гибридная и клещевая сварка
- Направка
- Поверхностное упрочнение
- Маркировка и гравировка
- 5D обработка

II. Оборудование и его возможности:

1-я очередь 2013 год 11 лазерных комплексов размещены на площадях 1080 кв.м.





Станок лазерной резки LaserCut – 4 кВт

0.1 при толщине листа в 0,5 мм; 1,0 при толщине листа в 16 мм.

воспроизведения заданного контура, мм/м

 $\pm 0.05/1000$

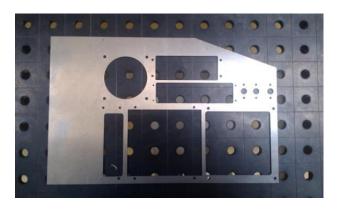
Скорость резки MM/C

500 – 600 при толщине листа в 0,5 MM;

5 при толщине листа в 16 мм.

Примеры изделий, изготовленных на LaserCut -4 кВт

Оборудование позволяет проводить лазерную резку листового металла толщиной до 16 мм



Станок лазерной резки LaserCut – 6 кВт

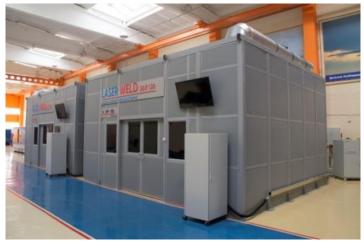
Размеры рабочей зоны, (длина, ширина,	6x2x0,1
высота), м	
	0.1 при толщине
Толщина реза,	листа в 0,5 мм;
MM	1,0 при толщине
	листа в 25 мм.
Точность	
воспроизведени	±0,05/600

Примеры изделий, изготовленных на LaserCut - 6020 без дополнительной механической обработки Оборудование позволяет проводить лазерную резку листового металла толщиной до 25 мм

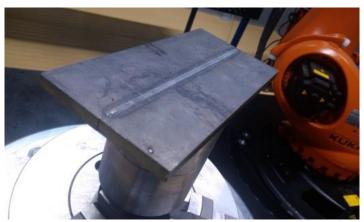
контура, мм/м	
500 — 600 при	
Сморости поружи	В
Скорость резки. 0,5 мм;	
мм/с 5 при толщине	
листа в 25 мм.	

Модуль лазерного упрочнения

Пример изделия, полученного при помощи модуля лазерного упрочнения


Перемещение по	1,3*1,3*
осям (X-Y-Z), м	0,8
Точность отработки	1 мм
перемещения по	
координатам Х и Ү,	
MM	
Повторяемость	±0,1 мм
отработки	
перемещения по	
координатам Х и Ү,	
MM	
Максимальная	1600
масса заготовки, кг	

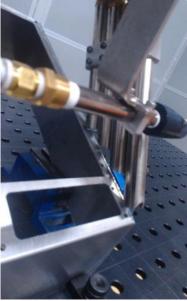




Модуль лазерной гибридной сварки мощностью 30кВт

Толщина	
свариваемого	0-25
металла, в	0-23
диапазоне, мм	
Диаметр	
свариваемых	0,5
деталей,м	
Длина	
свариваемых	2
деталей,м	
Скорость	8
сварки, м/мин	O

Стальные детали толщиной 25 мм, сваренные при помощи лазерной сварки


Модуль лазерной гибридной сварки мощностью 20кВт

Толщина	
свариваемого	0-15
металла, мм	
Диаметр	
свариваемых	0,5
деталей, м	
Длина	
свариваемых	2
деталей, м	
Скорость сварки,	8
м/мин	0

Изделия, полученные при помощи технологического модуля для технологии гибридной сварки на основе робота и лазера 20кВт

Лазерная наплавка

Обработка тел вращения, диаметром, мм.	от 10 до 500
Подача порошка в зону излучения, гр./мин.	10150
Длина изделий, мм.	2000.0

Пример лазерной наплавки

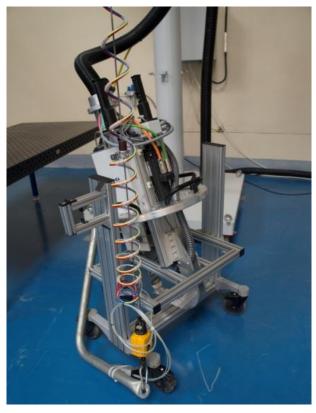


Сварочный модуль клещевой лазерной сварки

	BEE F
	6 6 6 6
0	0000

Пример приварки алюминиевых пластин к основному корпусу

Толщина	
свариваемого	1-6
пакета, в	1-0
диапазоне, мм	
Максимальное	
количество	8
сварных швов,	O
шт /мин	
Длина	
свариваемых	800
деталей, мм	
Скорость	4000
сварки, мм/мин	4000



Модуль ручной лазерной клещевой сварки

Толщина	
свариваемого	1-3
пакета, мм	
Максимальное	
количество	8
сварных швов,	O
шт. /мин	
Длина	
свариваемых	800
деталей, мм	
Скорость сварки,	4000
мм/мин	4000

5-и осевая система лазерной обработки в различных авиационных конструкциях

Пробивка отверстий диаметром 0,3 мм в алюминиевом цилиндре диаметром 120 мм и толщиной стенки в 10 мм

Перемещение по линейным осям, м	1,0 x1,0x1,0
Перемещение поворотной оси C, в диапазоне	+240- 660градусов
Перемещение наклонной оси D, в диапазоне	+60-240 градусов
Максимальная на стол,	1450 кг
Минимальный диаметр пробиваемого отверстия, мм	0,3

Модуль лазерной маркировки

Скорость	
перемещения	3
луча, м/сек	
Доступное	
линейное поле	100x100
гравировки, мм	
	Через
Управление	персональн
	ый
	компьютер

Пример маркировки. Материал – нержавеющая сталь

Модуль лазерной очистки

Скорость	
перемещения	3
луча, м/сек	
Максимальная	
средняя	20
мощность, Вт	
Bec	25
установки, кг	25

Пример портативной, ручной лазерной очистки и маркировки. Материал сталь 40. Загрязнение – ржавчина

II. Оборудование и его возможности:

2-я очередь 2014 год 3 лазерных комплекса размещены на площадях 300 кв.м.

Комплекс лазерной резки деталей типа тел вращения

Максимальная длина обрабатываемой	3,0
заготовки, м Диапазон обрабатываемых	25-190
диаметров, мм Толщина стенки заготовки, мм	До 12 мм

Типовые детали, обрабатываемые на ЛТК

Комплекс лазерной резки профильных деталей – лонжеронная резка

Максимальная длина обрабатываемой	6,0
заготовки, м	
Толщина стенки	До
заготовки, мм	20

Типовые детали, обрабатываемые на ЛТК

0,6

Комплекс лазерной обработки деталей сложных форм (5D)

Максимальна

обрабатывае

я высота

мой

ООО «Мелита-К»

Уникальность технологии:

Создана технология изготовления направляющего аппарата турбореактивного авиационного двигателя. Концепция импортозамещения.

ООО «ТМС-Групп»

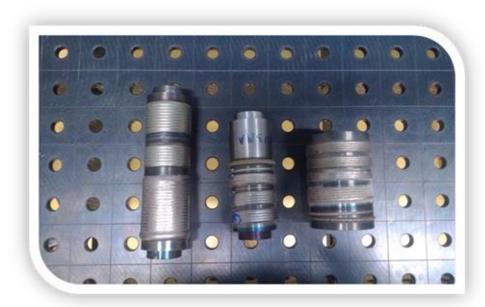
Уникальность технологии:

Создана технология сварки коротких б/у НКТ с целью их восстановления. Концепция импортозамещения. Сварные швы выдерживают давление до 300 атм. при высоком содержании серы в стали.

ООО «Казаньсельмаш»

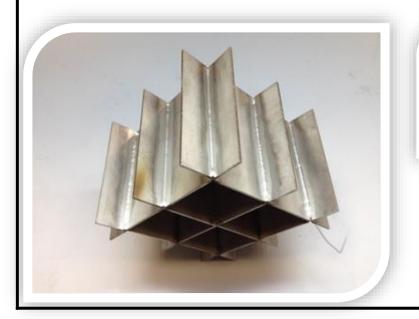
Уникальность технологии:

Создана технология изготовления деталей и узлов сельхозтехники. Концепция импортозамещения.



Уникальность технологии:

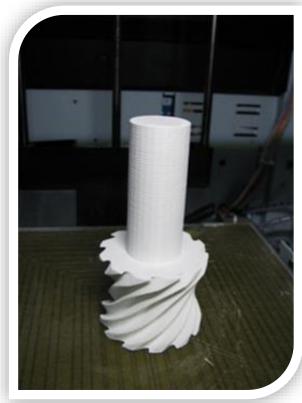
Создана технология лазерного поверхностного упрочнения авиационных деталей. Концепция импортозамещения.



ООО «Басэт»

Уникальность технологии:

Создана технология лазерной сварки пуклеванной нержавеющей стали малой толщины.


IV. Разрабатываемые технологии

Разрабатывается технология получения заготовок гиперболоидных зубчатых колес двойной кривизны послойным выращиванием (3D технологии). Технология позволит сократить финишную механическую обработку в 8 раз. Возможные потребители предприятия авиационной, судостроительной и других отраслей производства.

СПАСИБО ЗА ВНИМАНИЕ!